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Abstract : 

With the inclusion of systematic image errors and automatic techniques of 
gross error detection the least squares photogrammetric adjustment has 
reached an end stage in development, in which an objective determination 
and separation of "systematic" and "gross" errors becomes impossible . 

The authors propose new lines of thought which resolve this deadlock and 
allow the direct allocation of various error sources . 
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1. Introduction 

GOTTERDAMMERUNG 

OVER 

LEAST SQUARES ADJUSTMENT 

The method of least squares became the generally accepted 
computation method in geodesy and photogrammetry . However , it 
has serious drawbacks . It is particularly ineffective in the 
detection and location of gross errors and systematic errors 
in the measurements . Although an advanced test theory was 
developed for this purpose, an economic semiautomatic detec­
tion of these errors could not be achieved . 

However , other methods exist which give much more reliable 
results in the presence of outlying measurements . These 
methods are based on minimizing other objective functions and 
are discussed below . 

2 . Drawbacks of the Method of Least Squares 

As generally known , the method of least squares minimizes the 
sum of squares of corrections v to our measurements 

2 
Iv -> min . ( 1 ) 

From the adjustment results and the residuals (-v) it can be 
extraordinarily difficult to detect and locate gross errors . 
In fact , the least squares method is very efficient in hiding 
large errors and in distributing their effects over many 
measurements , thus making them unrecognizable . Erroneous 
measurements are not necessarily those which have the largest 
residuals after adjustment . This property of the least 
squares method is demonstrated in appendix A for an example 
of numerical relative orientation , where a gross error of 
4 0 Jlm is reduced to the largest residual of 7 Jlm in another 
measurement . 

In order to cope with these problems, an advanced test theory 
was developed by Baarda , based on the ideas of Scheffe . This 
test method is, however , very elaborate, requiring either the 
inversion of the normal equation matrix or repeated adjust­
ments with successive exclusion of all the individual 
measurements . Moreover - in the presence of more than one 
gross error - the method does not ensure correct results , 
because the decision of excluding an "erroneous " measurement 
is not reviewed during the further computation . 

Unknown systematic errors in measurements like lens - and film 
distortion in photogrammetry create another problem in least 
squares . When applying the least squares method to measure -
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ments with systematic errors , the result is nearly randomly 
distributed residuals . This effect is , for example , well 
known in photogrammetric block adjustment . In practical com­
putations different alternative hypotheses (extra parameters) 
regarding the systematic errors are included in adjustment 
and from the results it is judged which hypothesis is most 
probable . This evaluation is difficult due to the strong 
mutual correlation between the estimated parameters for sys ­
tematic errors and their strong correlation to the other un ­
knowns in the adjustment . Moreover , completeness is not gua ­
ranteed : if a certain type of systematic error is not includ­
ed in the adjustment , this error will not be found . 

3 . Least Sum Method 

As an alternative to the least squares method , the least sum 
method was proposed already in 1887 (Edgeworth , 1887) . Here , 
the sum of the corrections v is minimized 

L lv I -> mln ( 2) 

The method never found larger 
in its numerical computation : 
gramming problem is required . 
the introduction of efficient 
the solution of the least sum 
t i me than least squares . 

J • I absolute value of • 

application due to difficulties 
a solution of a linear pro -
In recent years , however , with 
algorithms (simplex algorithm) , 
principle does not require more 

This method is intuitively attractive , because larger resi ­
duals are easier tolerated , thus facilitating detection and 
location of outlying measurements from the results . In papers 
of Barrodale (1968) , who strongly advocated the method in 
recent years, the method gives consistently better results in 
the presence of outliers than least squares . In most cases 
the individual residuals clearly indicate which measurements 
are erroneous . Only in the presence of many and unfavourably 
located gross errors the method may lead to wrong conclu­
sions . The power of the method is demonstrated in our small 
example in appendix A, where the introduced gross error is 
now clearly visible in the residuals . The method , however , 
still lacks adequate theoretical foundation . For an easy 
numerical solution of this principle , refer to appendix B. 

4 . Robust Estimators 

Another alternative to least squares are robust estimators , 
introduced by Kendall in 1948. Robust estimato r s are estima ­
tors which are relatively insensitive to limited variations 
in the distribution functi o n of the mc:usurr:ments , nnd thus 
to the presence of gross and sys tema t ic erro rs . 

There exists a larg e class of rnhust ~s timation principles 
(about seventy) . The most well known amon g those are p roposed 
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by Huber and Hampel , and consist of minimizing 

cp(v) - min, ( 3) 

with cp(v) being for Huber 

{

v
2 

if JvJ < 2a 
cp(v) = -

2a (2JvJ - 2a) if JvJ > 2a 

(3A) 

a being standard deviation of measurements , 

and for Hampel 

Jv J 0 < Jv J < a 

a a < Jv J < b 
~ = sign(v)~ 

c-JvJ 
(3B) 

ClV b < Jv J < c . a c-b 

0 Jv J > c 

a,b,c , being constants . 

Note that in both cases the adjustment principle depends on 
the magnitude of the correction v , with larger corrections 
contributing only little to the objective function . 

Another robust estimation principle is given by 

L Jv JP -> min 1 < p < 2 ( 4) 

where the most favourable range of values p is between 1. 2 
and 1. 5 . 

The concept of robust estimation is so new that no united 
theory exists which enables us to select the best adjustment 
principle for our particular geodetic problems . But experi ­
mentally , it was found that these methods are by far superior 
to least squares in the detection and location of gross and 
systematic errors . They also compare favourably to the least 
sum method . As an illustration of the robust estimation 
principles , appendix A includes the computation of the rela ­
tive orientation according to principle (4) . The results are 
in this particular case slightly inferior to the least sum 
method . 

In practical computations it is advocated to use both the 
least squares method and one of the alternative principles . 
A larger difference in the results indicates the presence of 
gross errors or systematic errors and requires more detailed 
analys i s of the measurements . 

For a simple computational algorithm for robust estimation , 
refer to appendix B. 
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5 . The Danish Method -
An Extension of the Robust Estimation Principle 

The above difficulties with the solution of the least squares 
method have since many years been recognized by the Geodetic 
Institute of Denmark , where since early seventies an automatic 
error search routine has been used in the computation of all 
larger geodetic problems . This method was developed after the 
ideas of Krarup (1967) and is especially designed to elimi ­
nate gross errors . The starting point of the method is a 
conventional least squares adjustment . From the residuals of 
this first adjustment , new weights are computed for the indi ­
vidual measurements , based on the weight function 

p = { 

1 for 

proportional to exp( - c . v 2 ) for 

lv I < 2o 

lv I > 2o 

a being standard deviation of measurements 
c being constant . 

With these weights , a new least squares adjustment is comput ­
ed , and this process of reweighting and adjustment is repeated 
until convergence is achieved . This is usually the case after 
5-1 0 iterations . Finally , measurements affected by gross 
errors have weights 0 and their residuals are a measure for 
the magnitude of the errors . 

This method proved to be extremely effective in dealing with 
erroneous data . Simulation- runs indicate that this method , 
with properly chosen weight sequences , is more effective than 
the other alternatives to least squares . When applying this 
method to our small example in appendix A, the exact amount 
of the g r oss error is recovered after only ~ iterations . 

The method may be interpreted as an iterative solution to 
the Bayesian estimation principle 

2 2 
Var(v) = Iv exp( - ~) ->min 

2 o 

minimizing the variance of uncorrelated , normally distribut­
ed measurements . 

Another possible interpretation of the Danish method is given 
by nonlinear programming : Find the largest number of measure ­
ments , which is mutually consistent , and use only these 
measurements in the least squares adjustment to determine 
the unknowns x . An alternative (dual) formulation is to find 
those observations which are not consistent with the majority 
and exclude them from adjustment . In formal notation this 
p r oblem writes as 

max [vk J 
k 
lvkl < 2o 

2 
Ivk (x ) = 
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The numerical solution is complicated by the interrelation­
ship of the two optimization problems . The iterative method 
of the Geodetic Institute may be interpreted as a penalty 
method for solution of the above problem , and an optimal 
weight sequence assuring rapid convergence can be derived . A 
possible weight selection , usually yielding good results in 
photogrammetry , is shown below : 

1st iteration : p = 1 

2nd and 3rd iteration : p = (exp[-(~) 4 · 4 ]) 0 · 05 

following iterations : p = (exp[-(~) 3 · 0 J)0 . 05 . 
a 

6 . Stein Estimator -
A More Accurate Estimator than Least Squares 

James and Stein (1961) proved in a classical paper that there 
exist more accurate estimators than least squares , even for 
the case of normal distribution and in the absence of gross 
errors . When knowing a priori the accuracy of the measure­
ments , an estimator v for the corrections may be constructed 
from the least squares estimator v by the rule 

v = (I-A)v 

where I denotes the unit matrix and A is a positive definite 
matrix depending on a and v . This estimator has a smaller 
error variance than v . The above-mentioned alternative 
methods can partly be classified under this principle , thus 
yielding more accurate results than least squares , even in 
the absence of gross and systematic errors . 
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Appendix A: Results of Different Adjustment Principles 

Consider numerical relative orientation of a pair of photo­
graphs, based on the wellknown projective relationships . 

The lefthand camerastation is regarded to be fixed. Below the 
measured image coordinates x and y for 16 points are presented, 
used in relative orientation, and the results of the individual 
adjustments. Note that the first adjustment was executed with­
out gross error, and that a gross error of 40 ~m was introduced 
in the subsequent adjustments at point 100. The least squares 
adjustment completely camouflages this error . The least sum 
method and robust estimation retrieve 3/4 of the error, the 
Danish method also finds its correct amount. 

Arliustment accorrlinq to least squares method 

PUNKTNR B ILL EONR ,. tHH) ,. tHH) vx• tUH) VY' tUH) 

100 -10 0.0 DOD lDO .. DOOD o.o 0.2 
o.oooo lQQ.OOOO -o.o -o .2 

101 o.oooo 100. DODO o.o 0 ·6 
10 o.oooo 99.9960 -0 .a -0 .. 6 

102 o.oooo 60· 0000 o.o -1.1 
100.0000 &0. DO 00 o.o 1.1 

103 -1 oo.oooo '10.0000 o. o -2.1 
o.oooo qQ. 00'10 -a .a 2.1 

10. c.oooo '10.0000 o.o 1ol 
100.0000 59.9960 -o.o -1.1 

1 OS -1 D 0.0000 20.0000 0 .o 1.l 
o.oooo 19.9970 -a .a -1..3 

106 c.oooo 20· 0000 o.o Ool 
100.0000 19.9980 -o .a -a. 3 

107 -100 .o 000 O. DODO -o.o -o . 3 
o.oooo a. oo-ot o.o 

0 ·' 

1 08 a.aooo o.ooo1 o.o -1.0 
too.oooo o.oo1o -o .a 1.0 

109 -1 oo.oooo -'10. 0000 o.o 2.1 
o.oooo -'10· coso -a .a -2.1 

110 c.oooo -qo. oooo o.o 0 •• 
100.,..0000 -'tO. 0020 -a .a -a .9 

111 -10 o.oooo -60.00 DO o.o 1.0 
o.oooo -60.00.30 -a .a -1 .. D 

112 o.aooo -60.0000 o.o -2 .'+ 
100.0000 -s~. ~~so -a .a 2 •• 

1ll -10 o.oo oo -an. oo oo o.o -1.6 
o.oooo -7~. ~980 -0 .a 1 •• 

114 o.oooo -80.0000 o.o 0.7 
10 o.oooo -eo. onto -a .o -o. 1 

115 -10 0.0 ODD -100 . DODD -a .o -0.6 
o .. oooo -100.0000 -0 .o 0.6 

116 o.oooo -too . oooo o.o 0 •• 
lD o.oooo -100 . 0010 -o .o -0 .9 

Numerical relative orientation without gross error 
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Adjustment ac c ording to least squares method 
POINT NO PHOTO NO X' ( )'11'1.) Y' ( 1'! 1'1) VX' CU M> VY' CU I'!) 

100 0 . 0000 99.9600 . 0 - 5. 6 
-100 . 0000 100.00'00 .o 5. 6 

1 01 100.0000 99.9960 - . 0 3.2 
0. 0000 100 . DODO .0 -3 . 2 

102 100 . 0000 60.0000 -. 0 1. 0 
o. oo oo 60.0000 .0 -1.0 

103 0. 0000 40 . 0040 - . 0 7 . 3 
-100. DODO 40.0000 .0 -7.3 

1 0 4 100.0000 39.9960 .0 -2.4 
0. DODO 40.0000 - ' 0 2. 4 

105 0 . 0000 19.9970 -. 0 1.7 
-100 . 0000 2 0 .0000 .0 - 1.7 

106 100 . 0000 19.9980 . 0 -2.3 
0. DODO 2 0 , DODO -. 0 2. 3 

107 0 . 0000 0. DODO -. 0 1.5 
-1 00.0000 0 . 0000 . 0 -1. 5 

108 100.0000 . 00 10 . 0 -1.3 
0 . 0000 0 . 0000 - . 0 1. 3 

1 0 9 0. 0000 -40 . 0050 . 0 -3.0 
-100 . 0000 -40, DODO -.0 3 , 0 

110 100.0000 - 40 . 0020 .o - 2.4 
0. 0000 - 40.0000 -.0 2 . 4 

111 0 . 0000 -60.00 30 . 0 -2. J 
-100 . 0000 - 60, DODO - . 0 2 . 3 

112 1 0 0.0000 -59.995 0 -' 0 1.9 
0. 0000 -60. DODO .o -1.9 

113 0. 0000 -79 . 9980 - , 0 . 4 
- 100.0000 -80 . DODO . 0 - . 4 

114 1 DO. DODD -80.0010 - .0 . 2 
0 . 0000 - a a. oooo • 0 - . 2 

115 0 0 0000 -100 . 0000 . 0 - . 1 
- 100.0000 -100 . 0000 -. 0 .1 

11 6 100 . 0000 -100 . 0010 -.0 2 . 0 
0 . 0000 -100.0000 .o - 2.0 

Numeri c al relative orientation with gross erro r of 40 ].lm 
po i nt 1 00 ' photo No 2 . 

Adjustment accord i ng to least sum 

P UNKT NR BILLEDNR x• ( 1111 ) Y' ( 1111} vx• CU "} vv• CU" ) 

100 -10 o. oooo 10.0 . 0000 o. o 13 . '!I 
o. oooo '!1<;1 . <;1600 - o . o - 13 . <;I 

1 01 o. oooo 100 . 0000 o. o -a . 1 
100 . 0000 <;19 . <;1<;160 -o . o 0 . 1 

102 o. oooo 60 . 0000 o. o -0 . 6 
100 . 0000 60 . 0000 -o . o 0 . 6 

103 -10 o. o 000 ~ o . oooo o. o -4.5 
o. oooo ~ 0 . 0 0 ~ 0 -0 . a •• 5 

104 o. oooo u. oooo -o . o 1 . 9 
100 . 0000 39. '!1960 o. o -1. '!1 

105 -10 D. O DOD 20 . 0000 o. o -o . 2 
o. oooo 19. '!1'!170 -o . o 0. 2 

106 o.o ooo 20 . 0000 -o . o 1 . 2 
100 . 0000 19 . 9980 o. o -1 . 3 

107 -10 o. oooo o. oooo o. o -1. 0 
o. ooo o 0. 0001 - o . o l o O 

I DB o. oooo 0. 0001 o. o - 0 . o 
100. 0000 o. oo1o - o . o o. o 

I 09 -10 o. oooo - ~ o . oooo - o . o 2 •• 
o. oooo -~a . oo so o. o -2 .~ 

11 0 o. oooo - ~ o . ooo o -o . o 1 . 3 
100 . 0000 - ~ o . 0020 o. o -1 . 3 

111 -10 o. ooo o -60 . 0000 - o . o 1 . 6 
o. oooo - 60 . 0030 o. o - 1 .. 6 

1 12 o. oooo -60 . 0000 o. o - 2 . 5 
100 . 0000 -59 . <;1<;150 -0 . o 2 . s 

113 -10 o. oooo - SO . DODO o. o -o ·' o. oooo - 7'!1 . 9'180 -o . o 0 .9 

114 o. oooo - so . oooo 0 . o o. o 
100 . 0000 - ao . oo1o 0 .o -0 .o 

115 -1 o o. oooo -100 . DODO o.o o. o 
o. oooo -100 . 0000 o. o -o . o 

116 o. oooo -100 . DOD O 0 . o - o .6 
10 o. oooo -100 . DOlO - o .. o 0 •• 

Num e rical r e lative orie n tation wi th g ro s s e rro r of 4 0 ].lm 
po i nt 1 0 0 , photo No 2 . 
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Adjustment according to robust estimation 

PUNKTNR B ILLEO~R 

100 

101 

102 

103 

1 o• 

105 

106 

107 

lOB 

109 

110 

111 

112 

113 

1H 

115 

116 

Numerical 
point 100 

,. UUO Y' (1'111'1) vx• tUMJ VY ' ( UPO 

-10 o.o 000 100.0000 o.o 11.1 
o. oooo 99.9600 -a .a -11.-1 

o.oooo 100.0000 o.o -1.1 
100.0000 99. 9'360 -a .a 1.1 

o. oooo 60.00 DO o. o -1· 0 
100.0000 60.0000 -a .a 1.0 

-10 0.0 ODD flO. 0000 0 .o -5 . 'J 
o .. oooo ~o. oo4o -o . o 

' · 9 

o. oooo 40.0000 -o.o 1.7 
10 o. oooo 39.9960 o . o -1.7 

-10 o.oooo . 20. 0000 o.o -1 . 2 
o .. oooo 19.9970 -a .a 1·2 

o.oooo 20 .. 0000 -o .a 1- 2 
lQO.OOOO 19.9980 o.o -1 · 2 

-10 0 .a DOD o.oooo o.o -1 .. 7 
o.oooo 0.0001 -a .a 1 - 7 

o.oooo 0,.0001 -0 .a 0.1 
100.0000 Q.OOlO o.o - o . 1 

-10 o.o 000 -liD. 00 DO -o .o 2 · 2 
c.oooo -liD. 0050 o.o - 2 .z 

o.oooo -40. DO DO -a .a 1 .5 
100 .. 0000 -40.0020 o.o -1 .s 

-10 o.oooo -60.0000 -o .o 1.5 
o.oooo -60.0030 0 .o -1 . 6 

o. oooo -60.0000 o .a - 2 .... 
1 oo.oooo -59.9950 -0 .a '·' 

-10 o.oooo -so. oo co o.o -a .a 
o.oooo -79.9980 -a .a 0 •• 

o.OOOD -80. DODD o.o o.o 
1DD .. DDDD -so .. oo 1D o.o -D .. 0 

-10 D .0 ODD -100 .0000 -a .o 0.1 
o .. ooo·o -100.00 00 o.o -o .1 

o.oooo -100.0000 o.o -o .a 
100.0000 -100.0010 -D .. 0 0 •• 

relative orientation with gross error of 40 
photo No 2. 
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Adjustment according to the Danish method 

POINT NO PHOTO NO x· <111'1) y• 011'1) vx· <,UM .l VY' <UM) WEIGHT 

100 0. 0000 99 0 9600 - . 0 -20.5 . 0 
-100.0000 100.0000 . 0 20 . 5 .0 

101 100.0000 99.9960 - . 0 -. 7 
0. 0000 100 . 0000 .0 . 7 

102 100.0000 60.0000 .0 1.1 
0. 0000 oo·. DODO . 0 -1.1 

103 0. DODO 40.0040 - . 0 2. 0 
1 -1 00.0000 40.0000 . 0 -2 . 0 

104 100 . 0000 39.9960 -. 0 --1.-1 

0. 0000 40.0000 . 0 1.1 

105 0. 0000 19. 997 0 -. 0 - 1.4 
1 -100 . 0000 20. 0000 .0 1.4 

106 100.0000 19 . 9980 -. 0 -.2 
0 . 0000 20.0000 . 0 • 2 

107 0. 0000 0. 0000 . 0 • 2 
-100.0000 0. 0000 -. 0 - • 2 

108 100.0000 . 0010 -. 0 1.1 
0. 0000 0. DODO . 0 - 1.1 

109 0. 0000 -40.0050 - . 0 -2.1 
-100. 0000 -40.0000 .0 2. 1 

110 100.0000 -40 . 0020 -. 0 -. 8 
0. 0000 -40.0000 . 0 • B 

111 0. DODO - 60.0030 -. 0 -1.0 
-100.0000 -60 .0000 . 0 LO 

112 100.0000 -59.9950 - . 0 2. 5 
0, DODO - 60.0000 . 0 -2.5 

113 0. 0000 -79. 9980 - . 0 1.6 
-100.0000 -80.0000 . 0 -1 .6 

114 100.0000 -80.0010 -. 0 - . 8 

0. 0000 - 80. DODO . 0 • B 

'" 0. 0000 -100 . 0000 -. 0 . 6 
-100.0000 -100.0000 -. 0 -. 6 

116 100.0000 -100 . 0010 -. 0 -1.0 
0. 0000 -100.0000 .0 1.0 

Numerical relative orientation with gross error of 40 vm 
point 100, photo No 2. 

Appendix B: Computational Procedure for Alternative Adjustment 

A simple 
methods, 
is given 

computational routine for the alternative adjustment 
which is closely related to the least squares method, 
in the following: 

For solving the adjustment problems (3) and (4), 

cp(v) ... min 

solves repeatedly the weighted least squares problem with 
weights for the individual measurements equal to unity in the 
first iteration and equal to 

p = <p ( v) 
2 

v + c c co~stant, relatively small 
to v 

as compared 

in the subsequent iterations. In particular, for 
method, p =1/(JvJ + c).Convergence can be proved 
conditions for c ~ 0 . 
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